일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- cv
- VIT
- GaN
- Fast RCNN
- GAN #StyleCLIP #YAI 11기 #연세대학교 인공지능학회
- 연세대학교 인공지능학회
- 컴퓨터 비전
- transformer
- CS231n
- nerf
- NLP
- Googlenet
- YAI 9기
- 컴퓨터비전
- cl
- 3D
- CS224N
- 자연어처리
- CNN
- 강화학습
- RCNN
- Perception 강의
- YAI 8기
- rl
- PytorchZeroToAll
- YAI
- Faster RCNN
- YAI 11기
- NLP #자연어 처리 #CS224N #연세대학교 인공지능학회
- YAI 10기
- Today
- Total
목록cv (25)
연세대 인공지능학회 YAI
U-Net: Convolutional Networks for Biomedical Image Segmentation ** YAI 10기 안정우님이 비전논문기초팀에서 작성한 글입니다. Abstact Present a network and training strategy that relies on the strong use of data augmentation Use available annotated samples more efficiently The architecture consists of a Contracting path and a symmetric Expanding path Contracting path Captures content Expanding path Enables precise local..
YAI 11기 최가윤님이 작성한 글입니다. [GoogLeNet] Going deeper with convolutions (2015 CVPR) Reference https://arxiv.org/pdf/1409.4842.pdf https://en.wikipedia.org/wiki/Gabor_filter [GoogLeNet (Going deeper with convolutions) 논문 리뷰]https://phil-baek.tistory.com/entry/3-GoogLeNet-Going-deeper-with-convolutions-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0 Abstract Improved utilization of the computing resources inside..
YAI 9기 박준영님이 나의야이아카데미아팀에서 작성한 글입니다. NeRF : Representing Scene as Neural Radiance Fields for View Synthesis [Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." Communications of the ACM 65.1 (2021): 99-106.](https://dl.acm.org/doi/abs/10.1145/3503250) Abstract 이 논문은 input으로 한정된 수의 3D scene을 획득, 이를 활용하여 continous volumetric scene function에 입각한 여러 방향에서..
YAI 9기 김석님이 비전논문팀에서 작성한 글입니다. Focal Self-attention for Local-Global Interactions in Vision Transformers 0. Abstract 목적 Self attention을 통한 짧은 것에서부터 긴 단위까지 visual dependency를 모두 capture할 수 있도록 설계하면서도 quadratic computational overhead로 인한 resolution이 높은 task에 관해서 어려운 상황도 극복할 수 있어야 함 Method SoTA model의 경우 coarse-grain이나 fine-grained local attention을 적용하여 computational & memory cost와 성능을 개선하는 방식을 채택함 ..
Diffusion Models Beat GANs on Image Synthesis ** YAI 9기 최성범님께서 DIffusion팀에서 작성한 글입니다. Abstract Generation model중 diffusion models이 SOTA를 달성 이를 위해 better architecture와 classifier guidance를 사용함 Classifier guidance는 classifier의 gradients를 사용하고, generated image의 diversity와 fidelity의 trade off 관계가 있음 1. Introduction GAN은 최근 FID, Inception Score, Precision metric으로 측정한 image generation task에서 SOTA를 달성..
Mask R-CNN * YAI 9기 박찬혁님이 비전 논문 심화팀에서 작성한 글입니다. 논문 Mask R-CNN Instance Segmentation 이번 논문인 Mask RCNN은 Instance segmentation을 task로 한다. Deeplab이 목적으로 했던 semantic segmentation은 이미지 속의 객체들에 대한 segmentation과 classification은 진행하지만 서로 다른 객체가 같은 클래스에 속해있다면 구분하지 못했다. 하지만 Instance segmentation은 오른쪽의 사진과 같이 같은 클래스의 다른 객체들을 다 구분할 수 있다. R-CNN R-CNN은 CNN을 object detection에 최초로 적용시킨 모델이다. RCNN은 두가지 stage로 나누어..
DNN 기초 ** YAI 10기 황채연님이 기초 심화 2팀에서 작성한 글입니다. Introduction 지난 세선에서는 선형 분류기로 이미지를 분류하는 개념까지 다뤄보았다. 이미지가 가장 잘 분류되도록 기울기를 계속 갱신한다는 개념이었다. 그렇다면, 구체적으로 기울기 갱신은 어떻게 이루어지는가? Loss fuction Loss function은 손실을 정량적으로 알려주는 함수로, 어떤 기울기가 최선인지 결정하기 위해 loss를 컴퓨터가 자동 정량화하도록 고안된 함수이다. 인간은 좌측 그림과 loss 수치를 보고서 자동차, 고양이, 개구리 순으로 정확하게 분류되었다는 것을 파악할 수 있다. 이 판단 작업을 컴퓨터가 수행하기 위해 우측과 같은 식을 입력한다. 자세히 뜯어보면, N개의 x(이미지 픽셀 값)과 ..
Instant Neural Graphics Primitives with Multiresolution Hash Encoding https://arxiv.org/abs/2201.05989 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding Neural graphics primitives, parameterized by fully connected neural networks, can be costly to train and evaluate. We reduce this cost with a versatile new input encoding that permits the use of a smaller network without sa..